lunes, 14 de julio de 2014

SISTEMA BINARIO


El sistema binario desempeña un importante papel en la tecnología de los ordenadores. Los primeros 20 números en el sistema en base 2 son 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000, 10001, 10010, 10011 y 10100. Cualquier número se puede representar en el sistema binario, como suma de varias potencias de dos. Por ejemplo, el número 10101101 representa, empezando por la derecha, (1 × 20) + (0 × 21) + (1 × 22) + (1 × 23) + (0 × 24) + (1 × 25) + (0 × 26) + (1 × 27) = 173.

Las operaciones aritméticas con números en base 2 son muy sencillas. Las reglas básicas son: 1 + 1 = 10 y 1 × 1 = 1. El cero cumple las mismas propiedades que en el sistema decimal: 1 × 0 = 0 y 1 + 0 = 1. La adición, sustracción y multiplicación se realizan de manera similar a las del sistema decimal:

100101 1011010 101

+ 110101 - 110101 x 1001

1011010 100101 101 000 000 101 101101

Puesto que sólo se necesitan dos dígitos (o bits), el sistema binario se utiliza en los ordenadores o computadoras. Un número binario cualquiera se puede representar, por ejemplo, con las distintas posiciones de una serie de interruptores. La posición "encendido" corresponde al 1, y "apagado" al 0. Además de interruptores, también se pueden utilizar puntos imantados en una cinta magnética o disco: un punto imantado representa al dígito 1, y la ausencia de un punto imantado es el dígito 0. Los biestables —dispositivos electrónicos con sólo dos posibles valores de voltaje a la salida y que pueden saltar de un estado al otro mediante una señal externa— también se pueden utilizar para representar números binarios. Los circuitos lógicos realizan operaciones con números en base 2. La conversión de números decimales a binarios para hacer cálculos, y de números binarios a decimales para su presentación, se realizan electrónicamente.

 
 
 
 
 

No hay comentarios.:

Publicar un comentario